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SUMMARY 
A new way of treatino isoperibol (constant surroundings temperature) calorimeter 

data is proposed which applies equally well to ordinary and heat flow calorimetry with 
advantage in both cases. In the former, heat loss to the surroundings is compensated 
for; and in the latter account is taken of calorimeter temperature changes. 

In the present treatment all relevant contributions are inserted into the enthalpy 
balance equation of the calorimeter. This results in a differential equation which may 
be integrated numerically along the path of the experiment; algorithms for data 
treatment are given. In this way a precise measure is obtained of the enthalpy change, 
or rate of change, as a function of time whether ordinary or heat flow calorimetry is 
envisaged. Using the same calorimeter the method was tested with three enthalpy 
sources: (i) a short (5 min) Joule heat pulse inversion of sucrose at two rates 
(first order constant: 2.26 h-1; 0.39s h-1) and 
at several levels (including zero) over more 

a constant supply of Joule heatinm 
h. The enthalpy, as calculate8 

numerically, agrees well with experimental data in all cases. 
In the periods before start and after stop of a thermochemical experiment the 

calculated enthalpy remains at a constant level, so that hundreds of readings may 
serve to determine the level difference with a correspondin increase in precision; and 
during the experiment enthalpy measurement may be us d for kinetic studies in the 
case of slow reactions. 

INTRODUCTION 

To the thermochemist who endeavours to make precise measurements of the 

temperature jump in his isoperibol calorimeter, heat exchange with the surroundings is 

an error which must be kept at the. lowest level possible, and which limits his realm 

to that of fast reactions. To his colleague who works with a heat flow calorimeter, on 

the contrary, heat exchange is the principal quantity of interest, and temperature 

changes are usually neglected as being transient phenomena. Traditionally, each has 

focussed on what he considers to be the main effect, treating the other term as an 

undesirable perturbation. In spite of Tian’s work (refs. 1,2) few, and foremost among 

them Professor McGlashan, (refs. 3,4) have realized that Newton’s law of cooling is 

used implicitly or explicitly in all calorimetry, and that large k calorimetry is perfectly 

feasible. 

The present contribution shows how, based on the enthalpy balance of an 

isoperibol calorimeter of either type, one may derive from the thermogram of an 

experiment a function which is proportional to the enthalpy change, or rate of change, 

of the experiment. 
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ENTHALPY BALANCE EQUATION 

Let the system be an open calorimeter, including the inner vessel and its 

contents, and let H designate its enthalpy. To get a concise description, substitute the 

independent variables {T, p, s} for the usual set {S, p, nB} so as to obtain the 

following total differential 

dH= CdT+ V(l-cwT)dp+~HBdng 

which relates the system enthalpy change to changes in T, p and ng. C is the system 

heat capacity at constant pressure (normally designated C,); at constant pressure the 

second term vanishes; and the last accounts for changes in amounts of substance. If a 

chemical reaction r takes place in the calorimeter, shifting the extent by d<, then the 

amount of any reacting substance B changes by dnB = uBd{ while the amounts of 

other substances present remain constant. The sum term may then be written as ArH 

d<, and equation (1) simplifies to 

dH= CdT+ ArHdt (2) 

At constant pressure dH is related to heat and work by 

dH= bw’+ 6q (3) 

where 6w’ includes all work except pV work, and 6q all heat transferred to the 

system. It may be noted in passing that in the ideal open calorimeter both terms are 

zero so that dH = 0: such a calorimeter is isenthalpic. In that case the temperature 

change closely matches the reaction enthalpy decrease. 

In the general case; combination of equations (2) and (3) results in the enthalpy 

balance equation 

ArH dc + C dT = 6w’ + Sq (4) 

where the terms on the RIG are to be specified according to apparatus and 

conditions. 

DIFFERENTIAL EQUATION 

The term 6~’ includes two types of work: electric work, supplied in the calibra- 

tion phase only, at a known power P = U. I; and a small but steady contribution of 

mechanical work from the stirrer and possibly electric work from the temperature 

sensor. We shall neglect the latter for simplicity; it may be corrected for by a simple 

shift of the temperature baseline, as shown in ref. 5. 
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The term Sq covers heat transfer by conduction and convection from the sur- 

roundings, of temperature Te, to the calorimeter. Both T and Te are supposed uniform 

in space, and the rate of heat transfer is assumed proportional to their difference 6’ 

= T - Te: 6q = -Gl? 6t = -kCe 6t where k is the familiar cooling rate constant. If 

furthermore Te is rigorously constant in time, 6T may be replaced by 68. Inserting the 

values of 6~’ and Sq over the time interval 6t into (4) and rearranging we get 

-A,HJ< + P6t = c(ae + km) (5) 

This differential equation which relates increments in time St, temperature FB. 

and extent & may be modified to suit three purposes: 

a) In an ordinary thermochemical experiment (where P = 0) integration from ti 

to tn gives 

-A,H& - (I) = C(B,, - 01) + kc )dt I (6) 

where In = ((t,,) etc., provided -ArH is independent of C. This expression differs from 

the customary equation by the integral which corrects for heat loss to the sur- 

roundings. Before reaction the LHS yields a constant value (zero) and after its 

completion it settles at another constant value; by equation (6) the same applies to 

the RHS. If the reaction is fast the result is a steplike function of time; if not, the 

RHS will give information on how the enthalpy changes with time. 

b) In heat flow calorimetry (again with P = 0), division by 6t gives 

-A,H I: = C (iJ + M) 

where a dot indicates differentiation 

flow calorimetry presupposes a steady 

this constraint is no longer necessary. 

c) In the calibration phase (d{ 

tn 
Pdt = c(e, - 

t1 

(7) 

with respect to time. In normal practice, heat 

state, i.e. e = 0, but when equation (7) is used 

= 0), integration of equation (5) gives 

(8) 

This time both the LHS and B(t) are known so that the constants k and C may be 

determined using the method of least squares. 

By their common origin equations (6) and (7) carry the same information (apart 

from a constant) although they may be used for widely different purposes. 
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;\LGORITHMS 

The equations given above readily lend themselves to numerical treatment. Let a 

set of points {ti, &} be given, the thermogram of a calorimetric or calibration esperi- 

ment, with i = 1, 2, . . . , n so closely spaced that 6’ may be considered a linear func- 

tion of time in each interval. In the i’th of the n - 1 intervals, let &t = ti+i - 6, 

El8 = Bi+r - Bi, and let the average value (Bi) = (8i + 6’i+i)/2. 

a) To find the enthalpy change from a thermogram, instead of integrating sum 

up enthalpy contributions from the time intervals AC &rt, ... , &,-It according to 

equation (6). The resulting algorithm is 

(9) 

and applies equally well to ordinary and heat flow calorimetry. 

b) To find the enthalpy rate of change from a thermogram, replace time 

derivatives in equation (7) by difference quotients 

- 4rH $$ = C { 8 + L(Bi) ) = C [ w + k(ei> } 

‘This gives a new value of the enthalpy rate of change for each new measurement. 

Hence a high resolution in time is obtained, and the reaction rate is tracked closely 

although with a corresponding loss in precision arisin g from the difference quotients. 

The remedy to this is averaging or curve smoothing; or equation (6) may be used 

instead to find ArH.e(t), followed by differentiation. 

c) To find the constants k and C from the thermogram of a calibration 

experiment, treat equation (8) in a similar way: 

(11) 

where (Pi) is the average value of P in the i’th interval; if P is constant the LHS 

simplifies to P(t, - tl). 

CALIBUTION 

The parameters k and C must be determined for every new thermochemical 

experiment since both depend on the tilling though their product (the thermal 

conductance) does not. Here the integrated equation (11) between P and 8 is to be 

preferred since it gives better precision than may be obtained from an equation 

between derivatives. Two procedures for evaluating k will be described below; when 

this has been done, C may be calculated. 
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In perhaps the simplest way to determine t the calorimeter is initially warmer or 

colder than the surroundings, and no electric power is supplied. A recording is taken 

of the temperature difference as it decays exponentially towards zero. With P = 0 the 

expression in brackets in equation (11) is identically zero, and since all values of d 

and t are known one may plot 0, versus the sum which is seen to give a straight line 

of slope -k and intersection 01. 

A more general, and probably more precise method may be derived from the 

following considerations. Let electric work, the power of which P(t) is an arbitrary 

function of time, be transmitted to the calorimeter with d{ = 0. Then, according to 

equation (5) 

68 + km, = cl P(t)Gt 

The general solution to this differential equation is 

0(t)exp(kt) = 8(O) + 0 [&t’)exp(kt’)dt’ 
JO 

(12) 

which becomes particularly simple in periods of constant P. Thus P may be a positive 

or negative step function at t = 0, or it may change abruptly from one constant 

value to another a number of times. In any such interval the analytical solution takes 

the following form 

e(t) = Cl + c2 exp( --IFt) (14) 

Here cr = @(co), ez = 6’(O) - 8(co), and t is the cooling rate constant which is vital 

to subsequent calculations. Given a data set of the form {ti, 6’r) it is possible to find 

values for q, cs and k that will optimize the fit of equation (14) to the observed 

data, using the method of least squares for the nonlinear case. (refs. 6,7) A small 

calculator capable of handling matrices (Hewlett-Packard 28 S) was used in these and 

all subsequent computations which involved typically 20-70 data points, but 

ready-made programs are available which may be used with personal computers and 

larger machines, e.g. NLIN by SAS. (ref. 8) This takes care of k. 

When k is known, C may be found as follows. With the calorimeter initially at 

rest (apart from stirring), let calibration work UI be supplied at a rate P where P(t) is 

some function of time in the interval ta < t < tb and zero outside. The course of 

events is adequately described by equation (11). Its LHS is zero up to ta, then rises 

with time to a new value at tt,, and remains there for the rest of the calibration. The 

equation tells us that the expression in curly brackets on its RHS must behave in a 

similar way; its value may be computed for each ti from the thermogram and t From 

the ratio between the steplike increases C is determined. All measurements before t 
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may serve in determining the baseline, and all after th can be used in computing the 

value of the espression after the increase. 

In practice both k and C may be determined in one experiment. With the 

calorimeter initially at rest. 0 measurements are takeu before, during, and after supply 

of calibration work. From the decay of 0 in the last phase with P = 0 (a constant 

value) k is calculated, and then the RHS bracket expression is evaluated using all data 

from the thermogram. 

EXPERIMENTAL 

A primitive open calorimeter shown in Fig. 1 was used to test the method 

described above. Its surroundings, a cylinder with lid, both made of solid aluminium 

of thickness nowhere less than 6 mm, was kept at constant temperature to within a 

few mI< by circulating thermostat water around it. The calorimeter proper, a cylindri- 

Fig. 1. Sketch of the measuring system. C calorimeter proper with filing; S stirrer; R 
resistor encapsulated in ceramics; T temperature transducer. The calorimeter, made 
from 1 rmn copper sheet, is suspended from a plastic ring P reposing on a recess in 
the aluminium housing H which is lodged in a Dewar vessel D. Thermostat water is 
circulated throu h the space between H and D. A lid L equally in alumInium is 
clamped to the % ousing and covered by 25 mm of thermal insulation. 

cal beaker made from nickel-plated copper sheet 1 mm thick, was in all cases filled 

with 300 g of aqueus solution. The temperature sensor was a linear transducer (Analog 

Devices AC2626) with sensitivity 1 bA/I<, dissipating about 3 mW and giving a 

precision of a few mI<. The stirrer produced less heat than could be measured with 

the sensor. The electrical heater was a 103.6-n ceramic resistor with teflon coated 

leads; voltages across this resistor and a suitable series connected resistor were both 

monitored. The duration of power pulses was measured with a quartz clock trigged by 

the heat pulse. The diurnal variations of the calorimeter temperature were found to 
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be of the order of * 0.04 1~ and the hourly changes about one tenth of this. Further 

details are given in ref. 5. 

The contents of the calorimeter were in all cases 250.00 g doubly deionized water 

plus 50.00 g sucrose. For simplicity the startin, n condition was chosen to be one of 

thermal equilibrium as verified by recordin g the temperature for at least one hour. 

Reaction was started by adding 10 ml of 0.01 mol.kg-1 phosphate buffer, pH = 7.4, 

containing various small amounts of inverrase and thermostatted to Te for 1 h before 

use. Thermograms were recorded for periods up to 10 h. 

RESULTS 

The distinction between ordinary and heat flow calorimetry being essentially one 

of duration, the method was tested using a fast, an intermediate, and a slow enthalpy 

change: (i) a Joule heat pulse lasting for about 5 min: (ii) a first order chemical 

reaction extending over more than 1 h: and (iii) weak Joule heating at several rates 

(including zero) and lasting for over 10 h. 

(i) Fast enthalnv increase. The calorimeter was filled with 250.00 g of water 

plus 50.00 g of sucrose and left for the temperature to settle at 0 = 0. A pulse of 

power 3.346 W was then applied for .3_,. “3 1 s and recording continued for 6 h. The 

thermogram is shown in Fig. 2. A fit of the decaying part gave a k value of 
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Fg* 2- a) Temperature of the calorimeter T relative to that of the surroundings Te, 
= T - Te, as a function of time (lower curve. l - 0); b) the function 

/Pdt[C = w/C as calculated from equation (11) (upper curve, 4 - 4). With the 
calorimeter mitially in thermal equilibrium, 
about 5 min and then stopped. 

0 = 0, Joule heating was applied for 

1.400.10-4 s-1. Both the thermogram and the calculated values of the expression in 

curly brackets of equation (11) are shown in the figure, the latter presenting a sharp 

rise from 0 K to 0.9317 K, as found by averaging values from the first hour or more 

after the burst. Hence C = 1323 J-K-1. 

(ii) Chemical reaction. Nest the method was applied to follow the inversion of 

sucrose which is known to be of order one, and which may conveniently be started 

and made to proceed at a desired rate by the addition of suitable amounts of 
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l - 0) aud of -AH&/C calculated from equation 
9 (upper curve, A - A) duriqg a chemical reaction started at t = 0. 6 is seen to 
ecline long before the reaction is over. 

invertase. The graphs of Fig. 3. prepared in the same way as those of Fig. 2, show 

that while the recorded temperature is seen to fall off towards zero, the calculated 

function -4rH</C closely (o = 13 mI<) follows an esponential approach to a final 

value of 1.579 I<. From these figures I1,H = -1-1.33 k.J~mol-r for the inversion 

reaction, and its rate constant was found to be kr = 6.27.10-a s-1. 

A slower version of the esperimeut (with less invertase) gave -14.25 kJ.mol-r 

and l.lOJ* 10-4 s-1 respectively. 

(iii) Slow enthalov chanse. Again with 300 g of filling as above (except for the 

invertase) the calorimeter was brought to thermal equilibrium. Constant Joule power 

was then supplied at the rates: 1) 0 ( t < 220 mix 200.9 mLV, 

2) 220 3 1 < 350 min: 162.6 mW; and 3) 350 _< t c SO0 min: 0 mW. Part of 

the resulting thermogram is seen in Fig. 4. k values were calculated from its first and 

third sections: 1.357.10-4 s-t (1); and 1.353.10-4 s-1 (3). The lo/C plot, not shown, 

was found to consist of three linear sections; instead. its time derivative P/C was 
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4. Plots of 19(t) 
culated from equation 

(up er curve, l - l ) and of P/C (lower 
(7 . Constant power was applied at three f 

162.6 mW, and 0 mW. Note the sharp transitions between these. 

levels, A - A) as 
levels: 200.9 mW; 
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calculated from equation (11) differentiated with respect to time in the same way as 

(10) was obtained from (9), and leadin, m to the same RHS. The resulting graph clearly 

reveals the presence of three power input levels: P/C = 1.503.10-4 K.s-1; 

1.198.10-4 K-s-1; and 0 K-s-1 respectively, a fact which is effectively camouflaged in 

the thermogram. Comparing these values to the power levels given above one obtains 

from the first two cases C = 1336 J-K and 1356 J-K respectively. 

CONCLUSION 

The present method which consists in replacing 

6(t) + jt6’it7dt’ 
0 

thereby taking into account both the calorimeter temperature change and its heat 

exchange with the surroundings, applies to ordinary and heat flow calorimetry. 

Important advantages result from its use: 

- a correct picture is obtained of the enthalpy change, or rate of change, 

produced in the calorimeter, 

- values of initial and final temperature may be calculated from measurements 

over long periods in time before and after an experiment, with considerable increase in 

precision, see Fig. 2. Without the present method, one would have to extrapolate the 

6’(t) backwards using Dickinson’s procedure (ref. 9), - 

- calorimetric studies of kinetic nature of slow reactions are possible, see Fig. 3, 

and 

- heat flow calorimetry may be extended into the range of relatively fast 

changes (transients), see Fig. 4. 

Finally it should be emphasized that in a test of the method, the results can be 

no better than permitted by the equipment, and that the quality of the latter leaves 

much to be desired in the present case. In particular, the stability of the temperature 

of the surroundings and the sensitivity of the temperature sensor could be improved 

by one or two orders of magnitude at a reasonable expenditure. 

More details may be found in ref. 5. 
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